The Role of Robotic Outposts in Establishing a Permanent Presence in Space

Third Annual Carl Sagan Memorial Lecture

American Astronautical Society

November 16, 1999

E. C. Stone, Director

Jet Propulsion Laboratory California Institute of Technology

Topics

- The Eras of Space Exploration
- The Role of Robotic Outposts
- Establishing and Evolving a Permanent Presence
- Technologies
- Paving the Way for Future Exploration

The First Era: Getting There

Mariner 4

Mariner 4 View of Crater Rims -Southern Highlands of Mars

The Second Era: Finding Out What's There

The Third Era: Going Often, Landing, and Bringing Samples Back

Second and Third Era Characteristics

Second Era

Third Era

Individual Projects

Programs of Linked Projects

Large, Comprehensive Observatories

Small, Focused Systems

Global Scale Exploration

Local Scale Exploration

Remote Sensing

In Situ Sensing

The Fourth Era: Permanent Presence

Third and Fourth Era Characteristics

Third Era

Fourth Era

Episodic Surface Activities

Continuous, Cooperative Operation

Localized Mobility

Long Range Mobility

Limited Power

Sustained, Substantial Power

Limited Communications

Continuous, High-bandwidth Network

Communication

Bring Resources from Earth

Use In Situ Resources

The Role of Robotic Outposts

- Advanced Scientific Activities
 - Search for Extant Life
 - Planetary History and Evolution
- Public Engagement
- Support Human Exploration
 - Understanding the Environment and Resources
 - Providing Infrastructure and Technology

Elemental Abundance in Living Organisms and Earth's Crust

Enhanced Science: Laser Ablation and Spectroscopic Analysis

Enhanced Science: Ultraviolet Raman Spectroscopy

Planetary History and Evolution

Public Engagement

Support Human Exploration

Robotic Exploration

Sample Return

In-Situ Science

Support for Human Presence

Landers

Return

Navcom Orbiter Buildup → Steady State 5-6 Orbiters

Understanding the Environment and Resources: Mars '01 Lander

Mars Environmental Compatibility
Assessment (MECA)

Martian Radiation Environment Experiment (MARIE)

Mars ISPP Precursor (MIP)

Establishing and Evolving a Permanent Presence

- Choose 1-2 locations
- Develop incrementally
 - On the surface: power and resources node
 - In orbit: communication and navigation nodes

Mars Network Evolution

 Aggressive technology infusion will allow orders-of-magnitude growth in communications capability, enabling radical increases in the fidelity of Mars virtual presence

Key Technologies

- High-bandwidth Communication
- Precision Landing
- "Biochemistry Lab in a Teacup"
- Mobility
- In Situ Resource Utilization

Precision Landing: Mars '98

"Biochemistry Lab in a Teacup"

Precision Landing: Mars '07/'09 and Beyond

Surface Mobility Roadmap

Unlocking the secrets of the Red Planet

Innovative Mobility Systems

Inflatable Rover

Mobile Sample Acquisition System

Autonomous Robotic Exploration

Subsurface Mobility Roadmap

Access to the subsurface of Mars with innovative robotic techniques

Subsurface robots for penetrating sediments and ice deposits

Deep Drilling Systems

Surficial and shallow sampling of rocks and soils

Aerial Platforms Roadmap

Bridging the gap between orbital and surface platform data

In-Situ Resource Production Unit

Paving the Way for Future Exploration

